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Mathematical Modeling of Driver Speed Control
With Individual Differences

Guozhen Zhao and Changxu Wu, Member, IEEE

Abstract—The quantitative prediction and understanding of a
driver’s speed control is an essential component in preventing
speeding and designing of vehicle systems. Driver speed control
is a complex behavior of longitudinal vehicle control consisting
of speed perception, decision making, motor control, vehicle
dynamics modeling, and individual driver differences. However,
there are few existing models that can integrate all of these
aspects in a cohesive manner. To address this problem, this paper
introduces a mathematical model for a driver’s speed control
with analytical solutions based on human cognitive mechanisms
in driving. This model includes an integrated queuing network-
model human processor structure and the rule-based decision
field theory. This new model consequently can predict several
aspects of driver speed control behavior at the same time, such
as driving speed, throttle/brake pedal angle, acceleration, and
the frequency of speedometer inspection. A laboratory session
involving a driving simulator is conducted to validate the current
model. The model accounted for over 99% of the experimental
speed of the average driver, and over 95% of the experimental
speed for the majority of individual drivers.

Index Terms—Individual difference, mathematical model,
queuing network, rule-based decision field theory, speed control

I. Introduction

DRIVER’S SPEED control is a part of normal vehicle
control, and consists of a series of time-sharing ac-

tivities. A driver must constantly adjust or maintain his/her
speed while simultaneously watching the road, checking the
speedometer, and making critical decisions regarding speed
choices. In order to support the quantitative analysis of such
a complex behavior of a driver’s speed control, it is important
to develop computational models of human performance [1].
Computational models are not restricted to a specific aspect
of human performance but attempt to model several aspects
of it in a single, coherent, cognitive architecture [2].

A. Existing Computational Models of Speed Control and Their
Limitations

Two types of computational models have been devel-
oped to partially model a driver’s speed control behavior:
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car-following and rule-based decision field theory (RDFT).
Car-following models were by far the most widely extended
acceleration models used for studying the mechanisms of
vehicle speed control [3]. In the car-following model, the
subject vehicle is assumed to follow a leading vehicle and
maintain a safe distance from it. When this safe distance
changes, the follower is assumed to apply the acceleration
immediately. Later, general acceleration models that address
non car-following situations were proposed [4], [5]. For exam-
ple, Ahmed [5] developed a general acceleration model which
applied to not only the car-following but also the free-flow
regime. In the free-flow regime, a driver (follower) is not
affected by the leader’s behaviors (e.g., the leader’s vehicle
is far away from the driver), and the follower tries to attain
his/her desired speed.

Another type of the computational modeling of a driver’s
decision making process in terms of speed choice is RDFT
[6], an extension of Decision Field Theory (DFT) [7]. DFT
provides a mathematical foundation that leads to a dynamic,
stochastic theory of decision making when presented with
an uncertain situation. RDFT builds upon DFT in order to
accommodate multialternative preferences for each choice
within a single theoretical framework, and also to allow for
the application of multiple numbers of rules that become
applicable in a specific environment. In this regard, RDFT has
proven to be successful in previous applications that model a
driver’s cognitive behavior of speed choice [6].

Johnson and Busemeyer [6] proposed that there were mul-
tiple speed choices that describe different attributes in a repet-
itive decision making task. Such attribute information may
consist of potential money lost (e.g., speeding ticket), time
benefit (e.g., decreasing travel time), and safety consideration
(e.g., potential accident). They further revealed that, when new
drivers first begin to drive, they must deliberate over each
speed choice presented to them on the first few occasions, us-
ing only attribute information. With repeated experience, most
drivers begin to internalize a set of rules (e.g., decrease speed
when snowing) that become applicable when deliberating over
a target speed. As this set of rules develops for each driver
as he/she gains more driving experience, his/her internalized
rule(s) begin to compete with the primary attributes listed
above depending on the driver’s speed preference in any given
situation.

Although two existing computational models have been
used to model a driver’s speed control, further examination of
these models raises several questions that need to be addressed.

2168-2216 c© 2013 IEEE
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First, existing free-flow models assume that drivers are always
aware of their traveling speed, which is impossible in reality.
Recarte and Nunes [8] found that about 4% of the total
number of eye fixations were focused on the dashboard. This
indicated that a driver’s eyes focused most of the time on
external references outside of the car, and so the awareness of
his/her traveling speed often tended to be based on subjective
estimations.

Secondly, desired speed was expressed as a function of a
heavy vehicle variable and a driver’s characteristic variable in
previous free-flow models [5]. In reality, however, setting a
target speed involves complex and repetitive decision making
processes. Specifically, speed choice involves a certain amount
of information seeking, weighing of consequences, compe-
tition of multialternative attributes and/or rules, and conflict
resolution. Therefore, previous free-flow models cannot fully
explore the cognitive mechanism of speed choice.

Finally, existing free-flow models focused on the vehicle
performance (such as vehicle acceleration or speed), while
there were no model predictions offered for human behaviors
(such as speed choice, foot movement time). These models
assumed that drivers made instantaneous decisions regarding
their desired speed and instantaneous foot movement for pedal
operation, which is not a realistic model when studying driver
speed control.

In contrast, RDFT has its unique advantage of fully ex-
ploring a driver’s complex behavior of speed choice. As noted
above, however, speed control consists of a series of activities,
and decision making is only one component of the whole
process. RDFT cannot model the process of how a driver
perceives the speed or produces predictions with respect to
the foot movement for pedal operation. Moreover, because
RDFT does not include a vehicle mechanical model, it cannot
quantify the relationship between pedal control and vehicle
acceleration or overall speed. Finally, RDFT does not consider
the effects of individual differences on a driver’s speed control.
As a result, another modeling technique, the queuing network–
model human processor (QN-MHP), should be integrated with
RDFT to serve as the basis to model a driver’s complete speed
control behavior.

B. Queuing Network-Model Human Processor and Its Model-
ing of Driver Lateral Control

A computational cognitive model, QN-MHP, has been de-
veloped as a human psychological system to model and
simulate human behaviors [2], [9]. Liu et al. [2] applied QN-
MHP to model driver performance of lateral vehicle control,
such as steering and lane keeping. In their study, there were
two tasks involved: the primary task was to control a vehicle
and keep it inside lane boundaries while the secondary task
was to read a map in order to obtain the displayed information
while steering a vehicle concurrently. Vehicle heading, lateral
position, and road curvature served as model inputs, while
driver’s hand position (to move the steering wheel) and eye
position were predicted. The model was tested and validated
with a driving simulator.

Compared to RDFT, QN-MHP is a computational
perceptual-motor model without complex decision making

involved. Therefore, the cognitive process of speed choice
deals with multialternative speed decisions associated with
different attributes/rules for specific driving conditions cannot
be fully explained by QN-MHP. On the other hand, QN-MHP
has its advantages to modeling not only the cognitive process
of speed choice, but also speed perception and motor control.
Moreover, QN-MHP has a unique mapping toward the brain
areas which represent the mental architecture of information
processing, and which in turn helps people understand the
intrinsic mechanism of speed control in the mental system.
In short, the integration of QN-MHP and RDFT is expected
to quantitatively model the complete process of speed control
including speed perception, complex cognitive process of
decision making, and motor control.

C. Research Objectives

Based on the results of existing research in this field,
the objectives of this paper are to: 1) build a mathematical
model with analytic solutions that quantify the mechanism of
a driver’s speed control; 2) integrate QN-MHP and RDFT to
better explore the mechanism of the complete process of speed
control, which includes speed perception, complex decision
making, motor control, and a vehicle mechanical model;
3) model and predict the average driver’s speed control behav-
ior; and 4) model and predict individual differences of speed
control resulting from individual decision making reference
and impulsiveness.

II. Modeling Speed Control With the Integration

of QN-MHP and RDFT

A. Overview the QN-MHP Structure Involved in the Speed
Control

In QN-MHP, brain regions with similar functions are
represented as servers. Specific entities represent pieces of
information that pass through and are processed by the
servers. An entity travels on routes that represent neural
pathways connecting the different brain regions. QN-MHP
consists of perceptual, cognitive, and motor subnetworks. For
a detailed description of the QN-MHP and each subnetwork,
see [9].

As illustrated in Fig. 1, a few effective servers and routes
in QN-MHP were used in the model presented in this paper.
Visual inputs/entities (such as optical flow or posted speed
limit information) enter the QN system at Server 1. These
incoming entities are then transmitted in parallel pathways:
one of which is routed to the visual recognition server
(Server 2), which processes the content features (e.g., what
is the current speed limit), and the other is routed to the
visual location server (Server 3), where location features of
entities (e.g., where is the current speed limit) are processed.
These features from the two visual pathways are integrated at
Server 4.

The cognitive subnetwork involves four servers. A visu-
ospatial sketchpad represented by Server A integrates the
individual pieces of feature information from the attended
visual zone, and stores in working memory. Server F performs
math calculation and complex decision making (e.g., set
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Fig. 1. Effective servers and routes in QN-MHP that were used in the model.

the target speed according to the current speed limit). The
central executor represented by Server C communicates with
Server F, and then transmits entities to the motor subnetwork.
Server H represents declarative long-term memory and stores
a set of attributes and rules derived from previous driving
occasions.

The motor subnetwork contains five effective servers. When
entities travel to the motor subnetwork, motor programs and
long-term procedural information are retrieved (Server W)
and assembled (Server Y). Then, the primary motor cortex
(Server Z) decides the level of exerted force that can be
converted to the level of pedal angular velocity. Then, the
neural signals are transmitted from Server Z to the foot server,
which executes foot movements for pedal operation. When the
foot starts to move, Server X collects motor information from
Server Z and sensory information (e.g., force feedback, muscle
length, etc.) from the foot in real time, and then relays them
to Server C as well as Server Y.

B. Integration of QN-MHP and RDFT

In this model, the original QN-MHP was integrated with
RDFT to fully explore the complete mechanism of a driver’s
speed control. According to the QN-MHP, Server F in the
cognitive subnetwork (Fig. 1) performed complex cogni-
tive functions such as multiple-choice decision, visuomotor
choices, anticipation of stimuli in simple reaction tasks, etc.
Thus, it was possible that the deliberation process in RDFT
was incorporated in this Server F. Also, the deliberation
time within a single choice in RDFT was assumed to be
equal to one processing cycle time in Server F (18 ms on
average). In addition, as driving experience increases, a set
of rules and attributes derived and modified during previous
driving occasions might be stored in Server H (declarative
long-term memory) in the cognitive sub-network. This server
stored various production rules in choice reaction, long-term
spatial information, perceptual judgment, decision making, and
problem solving. When a driver is making a decision on
his/her speed, Server F could communicate with Server H
and look for either the attributes or rules that become ap-
plicable for that specific driving condition. Finally, the at-
tributes or rules stored in Server H could be modified or
updated. By integrating with RDFT, the original QN-MHP was

enhanced and used as a basis to explore the mechanism of
speed control.

C. Mathematical Modeling of Speed Control in the Integrated
QN-MHP

The desired new model outlined above involves five major
components: 1) speed perception; 2) decision making; 3) mo-
tor control; 4) a vehicle mechanical model; and 5) individual
differences.

1) Speed Perception Component: Most of the time, in
a real driving situation, drivers are aware of their traveling
speed relying on perceptual cues, combined with occasional
speedometer inspection. These perceptual cues may be visual,
auditory, or kinesthetic cues. While each category plays an
important role in assessing traveling speed, visual cues (e.g.,
optical flow), serve as the predominant reference that drivers
use to estimate their traveling speed [10].

Optical flow refers to the relative velocity of points across
the visual field as we move through the world. Owen et al. [11]
identified two aspects of the optic array that may affect the per-
ception of egospeed: global optical flow rate and optical edge
rate. Global optical flow rate (�#) is defined as the velocity
of forward motion scaled in unit of altitude or eye height per
second. It varies directly with driving speed (V ) and inversely
with altitude (H). Another source of information for perceiving
egospeed is discontinuity rate or optical edge rate. Optical edge
rate (�) is defined as the rate at which local discontinuities
cross a fixed point of reference in the observer’s field of view.
Velocity, in edges per second, can be calculated by timing
how many edges pass a reference point per second. It varies
directly with the density of visible texture (D) and speed (V ).

In most real world situations, global optical flow and edge
rate are correlated and contribute additively to perception of
self-motion [12]. According to [13] work, as well as the effects
of actual speed and eye height (altitude) on the perceived
optical flow revealed in the literature, we proposed that the
ratio of perceived speed to actual speed (V ) directly varied
with the ratio of the current texture density (Dc) to the texture
density in the last driving scenario (Dl), and the ratio of the
eye height in the last driving scenario (H l) to the current eye
height (Hc) [see (1)], with two constant parameters k1 and k2.
Here, drivers were assumed to check the speedometer and be
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aware of their traveling speed accurately in the last driving
scenario

vp =

(
Dc

Dl

)k1

×
(

Hl

Hc

)k2

× V. (1)

The parameter k1 was estimated to be between 0.118 and
0.123 in previous experimental studies [12], [13]. If context
or objects (such as poles) are evenly distributed, the ratio of
context density is inversely proportional to the ratio of the
space (L) between two contiguous objects

Dc

Dl

=
Ll

Lc

. (2)

When a driver visually checks the speedometer, his/her
perceived speed is equal to the actual vehicle speed

vp = V. (3)

According to the processing logic of QN-MHP, Server 3 in
the perceptual subnetwork processes the information related
to the object location features (such as speed). Thus, the three
math equations proposed above can be implemented in this
server.

The frequency of speedometer inspection was described as
the ratio of the total time duration of eye fixation on the
speedometer, which is expressed by the total driving time (T t)
multiplying the percentage of fixation on the speedometer (p)
to the average time duration of fixation on the speedometer
at one time (T s) [see (4)]. Recarte and Nunes [8] reported
that around 4% of the eye fixations were performed on the
dashboard during ordinary driving without the effect of other
tasks. In addition, T s was estimated to be between 760 and
880 ms [14]

�f � =
Tt × p

T s

. (4)

2) Decision Making Component: RDFT introduces two
levels of dynamics: The deliberation process with a single
choice and the learning process based on the outcomes across
choices [6]. In normal driving conditions, a driver is assumed
to make a decision on his/her target speed only based on the
attributes associated with each speed choice. Rules that are
derived from previous driving occasions for specific driving
conditions (such as bad weather condition, heavy traffic flow,
etc.) are stored in the human mental system, but are not
applicable in such normal driving conditions. Johnson and
Busemeyer [6] formulated a metric M for the possible outcome
to demonstrate the cognitive process of speed choice. The
current model used a similar method to construct a subjective
attribute matrix for each driver (see Section II.C.5.a in detail).

RDFT assumes that, at each point in time during delibera-
tion, the attention weights W (t) select only a single attribute
j, which focuses on the values of a single attribute from M
[i.e., W j(t) = 1, W k(t) = 0, for all k �= j]. This model used the
same method to assign the attention weight for average drivers
or normal drivers. However, considering the potential effects
of impulsiveness, the attention weights for either impulsive or
non-impulsive drivers were different (see Section II-C5.2 in
details).

The momentary valence V (t) is the advantage of an al-
ternative relative to all others on this processed attribute
(see (5), [15]). The default form of the contrast matrix C that
performs this comparison is such that the diagonal elements
Cxx = 1, and the off-diagonal elements Cxy = –1/(m – 1), where
m is the number of alternatives. Adding this valence to
some degraded trace (by S) of the previous preference state
results in the momentary preference vector P(t), containing
(as elements) the preference values for all alternatives (see
[15, eq. (6)]). For a detailed description of parameters estima-
tion, see Appendix A

V (t) = C × M(n) × W(t) (5)

P(t) = S × P(t − 1) + V (t). (6)

To determine when a choice is made, a threshold parameter
θ is used for terminating this deliberation process. In other
words, a decision maker must determine at some point that
he/she has deliberated enough and a decision should be
made. In this model, the preference for each speed choice
accumulates over time. If any preference for its associated
speed choice P(t) exceeded the decision threshold θ, such
speed choice was selected and no further deliberative process
is assumed. Then, the target speed v∗

tar(t) at time t was decided
by adding both selected speed choice vPi(t)≥θ and the speed
limit V sl

v∗
tar(t) = Vsl + vPi(t)≥θ. (7)

Besides attributes, the proposed speed control model was
able to examine the influence of rules on a driver’s behavior of
speed choice. In particular, each rule could be represented by
a column in the rule matrix X providing advice favoring one
alternative over other alternatives. In general, attributes and
rules formulate a concatenated matrix [M |X ]. If a specific
condition is present, then one of the columns of the rule
is selected for advice. For example, if it is snowy, a driver
may refer to the rule of bad weather (the first column) in
the rule matrix X =

[
θ 0 0 0

]T
. Since the value for

the first option (follow the speed limit) is sufficiently strong
enough to terminate the deliberation process, the first choice
is immediately selected.

Based on the processing logic of the QN-MHP and the route
of speed control defined in Fig. 1, the expected reaction time
(starting from perceiving the information of the speed limit,
and ending in transmitting neural signals from the primary
motor cortex to the foot server) was estimated by adding the
processing time for all effective servers together (see (8), [9],
[16]). The subscript letter “P” stands for the perceptual sub-
network and other letters are associated with corresponding
servers in QN-MHP, respectively

τ = TP + TA + TC + TF + TH + TF + TC + TW + TY + TZ (8)

3) Motor Control Component: Upon realizing the differ-
ence between his/her own desired target speed and perceived
speed, the driver reacts by moving the feet accordingly in
order to operate the pedal. Let θ0 be the steady state of the
vehicle pedal input. Define dθ = θ − θ0 as the deviation
of the pedal angle from θ0. Based on the QN-MPH, when
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neural signals are transmitted from the primary motor cortex
(Server Z) to the foot, the associated muscles’ elements
produce force to execute foot movements for pedal opera-
tion. Because this proposed model provides predictions every
100 ms, it is assumed that the pedal moves with constant
acceleration during each short time interval. Accordingly, we
proposed that pedal angular velocity (ω) directly varied with
the difference between target speed (v∗

tar) and perceived speed
(vp), with a constant parameter A

ω =
dθ

dt
= A × (v∗

tar − vp). (9)

Foot movement for pedal control, in general, is carried
out without visual guidance [17], [18]. Unlike an emergency,
where drivers must act as quickly as possible to avoid traffic
accidents, a driver’s speed control, as a normal driving task,
does not require any urgent pedal control. Thus, drivers are
assumed to not move their feet beyond a comfortable range
for the ankle (e.g., 80–113°, [19]). Here, the angle of the
ankle refers to the angle between a line from the lateral
condyle to the lateral malleolus and a line parallel with the
foot. This assumption is explained by the feedback control
mechanism in the body’s central nervous system: when the
foot rotates around the heel joint, the muscle-spindles sense
changes in muscle stretch velocity and Golgi tendon organs
detect changes in muscle force.

Foot switching time (tb in ms) is the time a driver moves
his/her foot from one pedal to the other. Hoffmann [20]
described the foot movement time between two pedals as a
function of a lateral separation of both pedals (Al) and a
perpendicular separation of both pedals (Ape) [see (10)]. It
was assumed that the foot lifted about 50 mm when a driver
switched from the accelerator to the brake in order to prevent
interference, and thus the effective vertical displacement of the
pedal was approximated by Ape = Ap + 50

tb = 123 +
61.1 × (Ape + 11.6)

Al

+
124.3 × (Al − 17.2)

Ape

. (10)

4) Vehicle Mechanical Model: Foot movement leads to
the changes of pedal inputs, causing the following changes of
vehicle acceleration and speed. Previous vehicle mechanical
models as well as experimental studies have shown that the
vehicle speed is a nonlinear function of the throttle angle.
For example, Ioannou and Xu [21] proposed that the vehicle
speed varied as a function of the throttle angle, time period
and the presence of dynamics during an acceleration process.
Similarly, during a deceleration process, the vehicle speed
varied with the braking force, the static friction force, air
resistant force, etc. In order to simplify this mechanical pro-
cess, we proposed a simple linear equation to approximately
quantify the relation between the deviation of pedal input and
the deviation of acceleration. As illustrated in (11), at each
short time interval �t, the deviation of the acceleration (da)
directly changes with the deviation of the pedal angle (dθ), and
B is a constant parameter estimated in a previous experimental
study [22]

da = B × dθ. (11)

Then, the acceleration applied at the next time interval �t

was described as follows:

a = a0 + da − cg × V 2 (12)

where a0 and cg represented the initial acceleration and the
coefficient of the overall drag on the vehicle (cg is set by the
driving simulator). The overall drag of the vehicle increases
with the square of the vehicle speed. At some point, it will
balance with the vehicle’s acceleration and vehicle’s speed
will no longer increase. Therefore, this overall drag of the
vehicle determines the vehicle maximum speed in this driving
simulator. This parameter also affects how fast the vehicle
decelerates when coasting. The higher the drag coefficient
the faster the vehicle will decelerate during coasting. Finally,
(13) expresses the vehicle’s speed at the next time interval
as �t. For parameters used in the vehicle mechanical model,
Appendix B gives a detailed description

V = V0 + a�t. (13)

5) Individual Differences: In this paper, we modeled two
individual differences: individual decision making references
and impulsiveness.

Individual driver differences in a decision making reference
Each driver has his/her own decision making reference that is
derived and modified during previous driving instances. The
National Highway Traffic Safety Administration (NHTSA)
reported that drivers, on average, believe that they can drive
about 7–8 mi/h over the posted speed before they will be
ticketed [23]. Such speed references may be affected by
many environmental factors, such as the speed limit, road
type, weather condition, traffic flow, and social environmental
variables, such as surrounding drivers [24].

A subjective attribute matrix M was constructed for each
driver. Each row represents an option or speed choice and each
column depicts a possible outcome. The numbers at the cross-
section of each row and column are subjective values that each
individual driver associates with the cost/benefit of speeding.
Because these numbers are the aggregation of multiple
attributes (monetary cost of receiving a speeding ticket, a gain
in terms of safety, and saving travel time), no qualifying units
are assigned to these values (i.e., no unit of measurement).
Every driver established their own individual reference points
including the number of rows and columns, scales, and the
values in each cell. For example, as shown in Table I, there are
four speed choices: 1) follow the speed limit (no speeding);
2) drive over the speed limit at 5 mi/h (drive at +5); 3) drive
over the speed limit at 10 mi/h (drive at +10); 4) and drive over
the speed limit at or greater than 15 mi/h (drive at ≥ + 15).
Also, there are four possible outcomes: driver gets a speeding
ticket when driving 5 mi/h over the speed limit (Ticket at +5),
10 mi/h (Ticket at +10), or at 15 mi/h (Ticket at ≥ + 15), or
driver receives no speeding ticket no matter how fast he/she
drives (No ticket). If the driver drove over the speed limit by
5 mi/h and got caught (the case at the cross-section of the
second row and the first column in Table I), the driver feels that
he/she would experience a net loss of −300 from receiving a
ticket even if he/she gains some time and safety benefits. Based
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TABLE I

Subjective Values in Terms of Monetary Cost, a Gain of Time,

and Safety (Further Developed From [6])

Ticket at
Ticket at Ticket at ≥ + 15 No ticket
+5 mi/h +10 mi/h mi/h at all

No speeding 100 100 100 100
Drive at + 5 mi/h –300 250 250 250
Drive at + 10 mi/h –250 –300 500 500

Drive at ≥ + 15 mi/h –500 –300 –300 750

on this attribute matrix, each driver’s desired target speed
was calculated. For a detailed description of the mathematical
deduction and parameter settings, see Appendix A.

Individual driver differences in impulsiveness with its ef-
fects on decision making and motor control Impulsiveness
is a salient factor that has received attention in literature
on accident prevention. Impulsiveness is one component of
risk-taking, and it is associated with driving anger [25] and
the most aggressive driving, such as speeding [26]. It deals
with a person’s control over his/her thoughts and behavior,
which may lead to speeding behavior if an individual lacks
the self-control to refrain from engaging in such an action
[27]. In this paper, we focus on modeling the effects of
impulsiveness on decision making and motor control since
previous empirical studies have not shown evidence on the
influence of impulsiveness on speed perception.

Compared to normal drivers, those who are characterized
as impulsive or non-impulsive drivers may have strong prefer-
ences for attending to a specific attribute. While these drivers
are determining about how fast to drive, their attention may
shift to thinking about each possible outcome (the police ticket
at +5, +10, ≥ + 15 mi/h, or not at all), rather than stochastically
drifting from one attribute to another in which the probability
of attention to an attribute at each moment is equal to the
probability (of occurrence) of each outcome [6]. Accordingly,
we proposed another way to form the attention weights matrix
W (t) to represent how impulsive or non-impulsive drivers
shift their attention (the possibilities of the occurrence) for
each outcome. More specifically, the Extroversion (E) and
Neuroticism (N) scales of Eysenck’s personality system [28],
[29] were used to divide all drivers into three categories:
normal drivers (those characterized as E+ and N− or E− and
N+); impulsive drivers (those characterized as E+ and N+);
and non-impulsive drivers (those characterized as E− and
N−). Then, normalized scores1 (ranging from 0 to 1) in E
and N scales of Eysenck’s personality system were averaged
(represented by x̄′). For impulsive drivers, x̄′ represents the
probability of attending to the time benefit, and the remainder
from one is evenly distributed among the alternatives. By
contrast, (1 − x̄) represents the probability of attending to the
speeding cost and driving safety, and x̄ is evenly distributed
among the alternatives for nonimpulsive drivers.

1For example, in a short form of the Revised Eysenck Personality Question-
naire (EPQR-S), Extraversion and Neuroticism each scale contains 12 items
(ranging from −12 to 12). Normalized scores x′ = x/24 + 0.5 (x: original
scores in E and N scales; x’: normalized scores in E and N scales).

Secondly, personality effects on motor speed control have
been well established in a variety of tasks (e.g., circle tracing
task, [30]–[32]). Of the variety of personality inventories
available, the relations between motor speed and personal-
ity are mostly consistent for E and N scales of Eysenck’s
personality system with a variety of behavioral paradigms
[33]. Bachorowski and Newman [30] reported that impulsive
persons (characterized as E+ and N+) have faster motor speed
in a task calling for slow and controlled movement compared
to non-impulsive ones (low scores on both scales), and that this
effect was more salient when a behavioral goal was present.
As illustrated by (14), a personality characteristic variable (η)
which represents the degree of impulsivity or the tendency
to act rapidly without deliberation [34] was introduced in
(9). Based on Bachorowski and Newman’s findings in their
previous study, η was estimated accordingly (0.736 for drivers
characterized as E− and N−; 1.533 for E+ and N+; and 1 for
E+ and N− or E− and N+)

ω =
dθ

dt
= A × η × (v∗

tar − vp). (14)

D. Assumptions

In this paper, several assumptions were made to facilitate
the development of the model. First, this model focused on
a driver’s speed control behavior in a free-flow traffic condi-
tion. Free-flow refers to a driver’s speed control behavior as
voluntary and unaffected by upstream or downstream driving
conditions [35]. It is critical in capacity analysis procedures
for basic freeway segments and multilane highways, and traffic
stream analysis for incidents and bottlenecks [35]. Free-flow
occurs in real driving conditions where there are no other
vehicles involved, or there are other vehicles but they do not
influence a driver’s speed control behavior. In this paper, a
driver was assumed to change his/her speed only when the
speed limits change. Secondly, we integrated speed perception,
decision making, motor control, vehicle mechanics, and indi-
vidual differences to model a driver’s speed control behavior.
If any one of these five components is missing (i.e., a driver
may not perceive his/her traveling speed while distracted),
the model cannot provide predictions with regards to several
components involved in driving.

III. An Experimental Study to Validate the

Model’s Prediction

A laboratory session involving a driving simulator was
conducted to validate the mathematical model of driver speed
control.

A. Participants

Twelve participants (6 males, 6 females) ranging from age
26 to 50 (M = 34.5, SD = 5.58) took part in this paper. Their
average driving experience was 4.76 years and average annual
mileage was 9200 miles. All of them had valid driver licenses,
at least three years of driving experience, and had driven within
the past month.
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B. Self-Report Measures

All participants were asked to complete a set of question-
naires after engaging in the driving task. The first questionnaire
was designed to capture the participant’s demographics (such
as age and gender) and driving history (such as estimated
cumulative driving mileage, the year a driver license was
first issued, etc). Then, they were required to construct a
subjective value matrix (reference Table I). Associated with
each speed option was a monetary cost of receiving a speeding
ticket and gain in terms of safety and time if no ticket
was received. The value in each cell represented a driver’s
thoughts on the cost/benefit tradeoffs for each speed choice.
Finally, a short form of the Revised Eysenck Personality
Questionnaire (EPQR-S, [29]) was used to divide all drivers
into three categories: normal drivers (those characterized as
E+ and N− or E− and N+, n = 6); impulsive drivers (those
characterized as E+ and N+, n = 3); and non-impulsive drivers
(those characterized as E− and N−, n = 3).

C. Apparatus

A STISIM driving simulator (STISIMDRIVE M100K) was
used in the study. It includes a Logitech Momo steering wheel
with force feedback, a throttle pedal, and a brake pedal.
The STISIM simulator was installed on a Dell Workstation
(Precision 490, Dual Core Intel Xeon Processor 5130 2 GHz)
with a 256 MB PCIe × 16 nVidia graphic card, Sound Blaster
X-Fi&trade; system, and Dell A225 Stereo System.

D. Driving Scenario

The test block was a simulated two-lane (in each direction)
highway environment. There were no pedestrians, traffic lights,
or road signs (e.g., stop/yield signs) involved. There were
other vehicles that randomly appeared in front of the driver’s
vehicle. However, all of them were very far away (≥150 m) so
that the driver’s speed control behavior would not be affected
by other vehicles. Speed limit signs with three levels of speed
limits (25, 45, and 65 mi/h) were displayed 60 m in front of
the driver. Participants were instructed to adjust their speed as
if they were driving a real vehicle on the road. In addition,
context density was kept constant throughout the entire test
block.

E. Experimental Design and Procedures

Two independent variables (acceleration versus decelera-
tion; speed limit changes 20 mi/h versus speed limit changes
40 mi/h) were examined in the current session, resulting in
four combinations: acceleration from 25 mi/h and maintain at
45 mi/h; acceleration from 25 mi/h and maintain at 65 mi/h; de-
celeration from 65 mi/h and maintain at 45 mi/h; deceleration
from 65 mi/h and maintain at 25 mi/h. Another acceleration
process 25–45 mi/h and deceleration process 45–25 mi/h were
assumed to be similar to 45–65 mi/h and 65–45 mi/h, so these
two conditions were not considered. Each acceleration or
deceleration process was repeated twice in each trial.

Upon arrival, all participants were first asked to sign a
consent document. After completing a set of questionnaires,
all participants went through a practice session that allowed

them to get familiar with the driving simulator control. The
practice session lasted one half hour and contained all features
that appeared in the test blocks. Before the formal experiment,
participants were allowed to adjust the seat so that they
felt comfortable. There were two trials in the test block
session. Each trial (20 km) lasted for 15–20 min depending
on individual driving speed. Participants were allowed to take
a 5-min brake between trials and were compensated for their
time ($10 per hour).

F. Measurement

Behavioral measures from the driving simulator test block
were automatically collected: time elapsed (in seconds), speed
(in m/s), acceleration (in m/s2), gas pedal angle (in degrees),
and brake pedal angle (in degrees). No drivers applied the
brake pedal during an acceleration process, so the mea-
surement of brake pedal angle was only applicable in a
deceleration process. The frequency of eye fixation on the
speedometer was measured by a video recording system. These
experimental driving data were compared with modeled ones.
The comparisons made are discussed in the following section.

IV. Validation of Model Predictions With

Experimental Data

Given the mathematical equations introduced above and
parameter estimations, the current model was able to predict
a driver’s speed control behavior. It is worth noting that there
are no free parameters in this model. A free parameter is
the parameter adjusted to fit the simulation results with the
experimental data. Each free parameter, in general, can be
regarded as a task-specific assumption [9]. Accordingly, the
fewer number of free parameters there are, the few number
of assumptions needed and the better the generalization the
model can maintain. Parameter settings in the current model
were provided in Appendix C.

The model was validated by comparing model predictions
with experimental data. In the first step, modeled average
speed, pedal angle, and acceleration were compared with aver-
aged experimental data across drivers and trials (12 drivers × 2
trials × 2 replications in each trial), regardless of the effects of
individual factors. Next, the influence of individual decision
making references and the influence of impulsiveness were
considered, respectively. Finally, both individual factors were
considered at the same time. Note that from steps 2 to
4, modeled speed, pedal angle, and acceleration combined
all drivers’ individual data to make a single prediction. In
addition, modeled average speed for each driver was compared
with his/her experimental speed data, taking into account the
effects of both individual factors. Due to page limits, only one
acceleration process (25–65 mi/h) and one deceleration process
(65–25 mi/h) were validated from steps 2 to 5. Finally, the
frequency of speedometer inspection was also modeled.

Although each acceleration/deceleration process lasted for
2–3 min, we only truncated and displayed a 30 s time win-
dow for each process. After this 30 s window, based on our
experimental data, drivers maintained a constant speed until
the next speed limit appeared. The starting point of each
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TABLE II

R2
and RMS for Model Predictions Without the Effects of

Individual Factors

R2 RMS
Accelerated from 45 mi/h and maintained at 65 mi/h
Gas pedal angle (°) 0.899 0.78

Acceleration (m/s2) 0.914 0.14
Speed (m/s) 0.801 1.25
Accelerated from 25 mi/h and maintained at 65 mi/h
Gas pedal angle (°) 0.8 1.75

Acceleration (m/s2) 0.811 0.33
Speed (m/s) 0.96 1.15
Decelerated from 65 mi/h and maintained at 45 mi/h
Gas pedal angle (°) 0.684 1.21

Acceleration (m/s2) 0.893 0.17
Speed (m/s) 0.975 0.33
Brake pedal angle (°) 0.779 2.42
Decelerated from 65 mi/h and maintained at 25 mi/h
Gas pedal angle (°) 0.731 0.81

Acceleration (m/s2) 0.908 0.26
Speed (m/s) 0.958 1.17
Brake pedal angle (°) 0.858 4.55

30 s time window was the time when the driver was within
200 ft of each speed limit sign. For each step, R2 results and
root mean square (RMS) results were provided to indicate
how well the experimental data could be explained by the
model. Nonparametric (Paired Samples) tests were performed
to examine the differences between model predictions and
experimental data at an alpha level of 0.05.

A. Model Average Speed Without Individual Differences

Modeled speed, pedal angle, and acceleration for the aver-
age driver were compared to the averaged experimental data
(Fig. 2). The corresponding R2 and RMS are provided in
Table II. Without the effects of individual differences, the
model was able to account for roughly 95.8–97.5% of the
experimental data in terms of speed during two deceleration
processes and one acceleration process (25–65 mi/h). Although
a much lower value of R2 was derived compared to the
one for the other three conditions, the model was able to
account for 80.1% of the experimental speed when drivers
accelerated from 45 mi/h and eventually maintained 65 mi/h,
which was still acceptable. In terms of RMS, on the other
hand, one deceleration process from 65 to 25 mi/h had a
smaller magnitude of variations for speed (around 0.32 m/s),
whereas the magnitude was 1.15–1.25 m/s for the other three
driving conditions.

B. Model Average Speed Considering Individual Differences
in Decision Making Reference

A subjective value matrix in RDFT was used for each
driver to model his/her speed choice and the speed control
behavior. After considering individual decision making refer-
ences, experimental data were better predicted by the model
for both acceleration and deceleration processes: overall R2

and RMS improved by 8.3 and 32.9%, respectively (Table III).
Specifically, R2 for experimental speed enhanced from 0.96 to
0.984 by 2.5%, and RMS decreased by 32.2% (from 1.15 to

0.78 m/s) during the acceleration process (25–65 mi/h). R2 for
experimental speed improved from 0.958 to 0.986 by 2.9%,
and RMS reduced by 45.3% (from 1.17 to 0.64 m/s) in the
deceleration process (65–25 mi/h).

C. Model Average Speed Considering Individual Differences
in Impulsiveness

The factor associated with personality changed its values
for those drivers characterized as either impulsive or non-
impulsive individuals. Compared to the decision making refer-
ence, impulsiveness did affect a driver’s speed control behavior
but not as much as the individual decision making reference:
overall R2 and RMS improved by 5.6 and 17.4%, respectively
(see Table III). Specifically, R2 for experimental speed
increased from 0.96 to 0.976 by 1.7% and RMS decreased by
11.3% (from 1.15 to 1.02 m/s) during the acceleration process
(25–65 mi/h). R2 for experimental speed enhanced from 0.958
to 0.964 by 0.6%, and RMS decreased by 5.1% (from 1.17
to 1.11 m/s) during the deceleration process (65–25 mi/h).

D. Model Average Speed Considering Individual Differences
in Decision Making Reference and Impulsiveness

When we considered the effects of both individual factors,
the model was able to explain around 99% of the experi-
mental speed for both acceleration and deceleration processes
(Table III). Overall, R2 and RMS improved by 9.3 and 41.5%,
respectively. In particular, R2 for the experimental speed
improved by 3.1% (from 0.96 to 0.99) during the acceleration
condition (25–65 mi/h), and 3.7% (from 0.958 to 0.993) during
the deceleration condition (65–25 mi/h). RMS for experimental
speed also improved by 47% (from 1.15 to 0.61 m/s) in the
same acceleration process and 60.7% (from 1.17 to 0.46 m/s)
in the same deceleration process.

E. Model Individual Speed Considering Individual Differences
in Decision Making Reference and Impulsiveness

At this step, modeled speed for the individual driver was
compared to his/her experimental speed. Due to page limits,
we only provided the 1st, 2nd, and 3rd 4-quantiles for driving
speed based on R2 results in ascending order (Fig. 3). Overall,
the model was able to explain 94.5–99.7% of the experimental
speed (magnitude of variation: 0.37–1.57 m/s) for the majority
of drivers. For driver 5 (65–25 mi/h) and driver 8 (25–65 mi/h),
the model could explain 70.9% and 76.1% of the experimental
speed with a larger magnitude of variations for speed (magni-
tude of variation: 2.78–3.11 m/s) (see Table IV).

F. Model the Frequency of Speedometer Inspection

Mourant and Rockwell [14] reported that experienced
drivers (who had driven at least 8000 miles a year for the
last 5 years), on average, spent 760 ms on each speedometer
checking. In this experiment, participants had similar driving
experience, so we used 760 ms as the average time duration of
each fixation on the speedometer (T s = 0.76). During a 30 s
time period, the number of eye fixations on the speedometer
was approximately modeled as being equal to 2. Experimental
results showed that the average number of eye fixations on the
speedometer was 2.15 (SD = 0.99) when drivers accelerated



ZHAO AND WU: MATHEMATICAL MODELING OF DRIVER SPEED CONTROL WITH INDIVIDUAL DIFFERENCES 1099

Fig. 2. Comparisons of modeled speed, pedal angle and acceleration for the average driver with averaged experimental data (error bars represent ± 1 standard
deviation of experimental data).

from 25 to 65 mi/h. The percentage of relative error (estimation
error, [36]–[38])2 was 7.1%. The Mann–Whitney Test did not
reveal significant differences between modeled and experimen-
tal results (U = 78, Z = –0.39, p = 0.78). During a deceleration
process (65–25 mi/h), the average number of eye fixations on
the speedometer was 2.4 (SD = 1.12, estimation error = 16.1%)
and there was no significant difference between modeled and
experimental data (U = 71.5, Z = –0.82, p = 0.36).

2The estimation error is derived based on|Y − X| /X · 100%. Y : modeled
result; X: experimental result.

V. Discussion

This paper introduces a mathematical model for a driver’s
speed control with analytical solutions based on a rigorous
understanding of the human cognitive mechanisms involved
in driving. This model integrates the QN-MHP with RDFT
to explore the complete mechanism of a driver’s speed con-
trol by unifying speed perception, decision making, motor
control, vehicle dynamics modeling, and individual differ-
ences. A laboratory session involving a driving simulator
was conducted to validate the current model. Considering
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TABLE III

R2
And RMS for Model Predictions With the Effects of Individual Factors

R2 R2 improved RMS RMS improved
(%) (%)

1. Consider individual differences in decision making references
Accelerated from 25 mi/h and maintained at 65 mi/h

Gas pedal angle (°) 0.848 6 1.42 18.9

Acceleration (m/s2) 0.876 8 0.24 27.3
Speed (m/s) 0.984 2.5 0.78 32.2

Decelerated from 65 mi/h and maintained at 25 mi/h
Gas pedal angle (°) 0.92 25.9 0.48 40.7

Acceleration (m/s2) 0.951 4.7 0.18 30.8
Speed (m/s) 0.986 2.9 0.64 45.3

Brake pedal angle (°) 0.925 7.8 2.95 35.2

Average of the percentage of improved R2 and RMS 8.3 32.9

2. Consider individual differences in impulsiveness
Accelerated from 25 mi/h and maintained at 65 mi/h

Gas pedal angle (°) 0.832 4 1.41 19.4

Acceleration (m/s2) 0.873 7.6 0.24 27.3
Speed (m/s) 0.976 1.7 1.02 11.3

Decelerated from 65 mi/h and maintained at 25 mi/h
Gas pedal angle (°) 0.867 18.6 0.65 19.8

Acceleration (m/s2) 0.922 1.5 0.23 11.5
Speed (m/s) 0.964 0.6 1.11 5.1

Brake pedal angle (°) 0.903 5.2 3.291 27.7

Average of the percentage of improved R2 and RMS 5.6 17.4

3. Consider individual differences in both decision making references and impulsiveness
Accelerated from 25 mi/h and maintained at 65 mi/h

Gas pedal angle (°) 0.863 7.9 1.23 29.7

Acceleration (m/s2) 0.912 12.5 0.19 42.4
Speed (m/s) 0.99 3.1 0.61 47

Decelerated from 65 mi/h and maintained at 25 mi/h
Gas pedal angle (°) 0.903 23.5 0.55 32.1

Acceleration (m/s2) 0.953 5 0.17 34.6
Speed (m/s) 0.993 3.7 0.46 60.7

Brake pedal angle (°) 0.936 9.1 2.54 44.2

Average of the percentage of improved R2 and RMS 9.3 41.5

“Improved” means improved R2 and RMS from the Section IV-A.

TABLE IV

R2
and RMS for Modeled Individual Speed

Accelerated from 25 mi/h Decelerated from 65 mi/h
and maintained at 65 mi/h and maintained at 25 mi/h

R2 RMS R2 RMS
Driver 1 0.997 0.376 0.982 0.782
Driver 2 0.965 1.157 0.982 0.749
Driver 3 0.962 1.052 0.986 0.701
Driver 4 0.99 0.543 0.957 1.053
Driver 5 0.993 0.541 0.709 2.782
Driver 6 0.974 1.049 0.994 0.456
Driver 7 0.947 1.325 0.991 0.577
Driver 8 0.761 3.111 0.952 1.155
Driver 9 0.981 0.78 0.97 0.908
Driver 10 0.977 1.024 0.954 1.205
Driver 11 0.947 1.567 0.945 1.312
Driver 12 0.972 0.967 0.964 0.936

the effects of both individual decision making references
and impulsiveness, the model accounted for over 99% of
the experimental speed of the average driver and over 95%
of the experimental speed for the majority of individual
drivers.

This paper is one of a few mathematical models with ana-
lytic solutions in the field of studying a driver’s speed control
behavior, while the original QN-MHP or Adaptive Control of
Thought-Rational (ACT-R; [39], [40]) relied on simulation to
model human performance. In general, mathematical models
with analytic solutions are always rigorous and parsimonious
compared to simulation models. They rely on a set of math
equations rather than a branch of codes to accurately quantify
the phenomenon. In addition, math equations are easy to
integrate and embed in systems for the purposes of application,
whereas simulation may require the conversion of codes to
different computer languages that others can use and interpret.
Another advantage of this paper is that it can model individual
differences that few existing studies are able to model.

Previous acceleration models (both car-following and free-
flow models) focus on vehicle performance, while there have
been no model predictions offered for human behaviors. Com-
pared to these models, this paper provides predictions with
regards not only to the vehicle speed and acceleration, but
also to human speed choice, reaction time, foot movement
time, etc. As a result, this model has the potential to guide
researchers or engineers in their efforts to find weak links and
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Fig. 3. Comparisons of modeled speed for individual driver with his/her
experimental speed. From top to bottom: 1st, 2nd, and 3rd 4-quantiles
for driving speed based on R2 results in an ascending order (error bars
represent ± 1 standard deviation of experimental data).

bottlenecks in driver behavior and performance. Even though
this paper models a driver’s speed control behavior in free-
flow driving settings, future work can extend and apply this
model in a car-following or congested traffic condition (being
extended). In such complex conditions, this model might
switch from speed control mode (where the driver follows
his/her desired target speed) to distance control mode (where
the driver has to adjust distance/headway due to an obstacle
ahead). This is also the way in which some advanced driving
supporting systems work, such as Adaptive Cruise Control
(ACC).

The major contribution of this paper was in expanding the
original QN-MHP to model a driver’s behavior of longitu-
dinal vehicle control, indicating the potential application of
QN-MHP in modeling integrated driving behaviors involving
both lateral and longitudinal vehicle controls. Liu et al. [2]
successfully employed QN-MHP to model driver performance
of the lateral vehicle control, such as steering and lane keeping.
In their paper, the authors also addressed the necessity of
expanding the model of lateral vehicle control to include
speed control so that the integrated driving behaviors could
be well explained and predicted. The current model is built
on the basis of the integration of QN-MHP and RDFT and all
math equations proposed were implemented in corresponding
servers of the QN-MHP. As a result, it is possible to integrate
the current mathematical model of speed control with the
existing cognitive modeling approach of lateral control to
model integrated driving behaviors.

In addition, quantitative analyses and predictions with re-
gard to a driver’s profile and driving patterns can help trans-
portation engineers/manufacturers better understand human

capabilities and the limitations of their speed control at an
early stage of vehicle system design. For example, existing
studies indicated that fuel consumption and emissions are
particularly sensitive to changes in vehicle speed and acceler-
ation [41]–[43]. Ahn [41] used a nonlinear multiple regression
model and neural network techniques to approximate vehicle
fuel consumption and emissions as a function of speed and
acceleration. According to Ahn’s model, the optimal fuel con-
sumption can be calculated given a specific level of a vehicle’s
speed and acceleration. Therefore, if automobile engineers are
capable of knowing a driver’s profile and driving patterns
as predicted by the current model, they can better design
engine/transmission technologies and in-vehicle fuel efficient
support tools [44]. Moreover, knowledge-driven components
on road element characteristics are important for fuel-efficient
driving. For example, if an experienced driver anticipates the
presence of an intersection, he/she can adapt fuel-efficient
driving strategies (e.g., step on the brake pedal early on and
lightly [9]) to reduce fuel consumption. This model can also
help engineers design a better electric vehicle (EV) battery for
optimal discharge rate and battery lifetime. Previous research
on EV batteries found that vehicle speed and acceleration had
significant effects on battery lifetime [45]–[47]. If a driver’s
speed and acceleration can be predicted, the vehicle engineer
can design a more effective EV battery management system
(BMS) to manage a better charging strategy, or provide the
driver appropriate feedback in order to prolong the lifetime of
the EV battery.

The National Center for Statistics and Analysis [48] re-
ported that speeding is a contributing factor in about one-
third of all fatal traffic crashes in the United States and costs
the country an estimated $40 billion annually. In practice,
the current model has value for predicting the occurrence
of speeding and reducing the risk of speeding-related traffic
accidents or injuries (being extended). The current findings (R2

and RMS results) showed that this model accounted for over
95% of experimental speed with small magnitudes of variation
for the majority of individual drivers. This indicates that the
model was able to predict the time at which a driver exceeds
the speeding criterion (e.g., posted speed limit plus a small
tolerance) and the magnitude of speeding. When speeding is
detected, a warning message can be played to warn the driver
about his/her current speed before speeding occurs. However,
because this model considers the component of decision mak-
ing, it can predict the occurrence of intentional speeding (i.e.,
the driver has the intention or motivation to change his/her
speed given the internal/external stimulus). Future work could
extend this model to predict the occurrence of unintentional
speeding due to a lack of awareness of the current speed limit
and/or traveling speed or inaccurate motor control.

Despite the conclusive findings of this paper, it is necessary
to consider its limitations so that they may be addressed in
the future. The model developed in this paper was validated
via a driving simulator study, which may produce different
speed perception and control for subjects compared with real-
road driving. The main concern of using the driving simulator
is that the mechanical model of a real car is proprietary. It
is difficult to obtain the detailed expressions and parameters
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TABLE V

Parameter Settings in the Current Model

Parameter Value (unit) Description Source
K1 0.118–0.1232 The slope of the linear increase (in log–log

space) of perceived speed with increasing
texture density

[12], [13]

P 4% The percentage of eye fixations performed
on the speedometer

[8]

T s 760–880 (ms) Eye fixation time spent on looking at the
speedometer

[14]

θ 1 Decision threshold in RDFT [6]
TP 126 (ms) Visual information perception time [2]

TB TC TF TH 18 (ms) Processing time at Server B, C, F, and H [2]
TW TY TZ 24 (ms) Processing time at Server W, Y, and Z [2]

λ 0.39 A constant sensitivity term that was used to
estimate parameter A

[4]

η 0.736 (non-impulsive); 1 (normal driver);
1.533 (impulsive)

A term that represents the degree of impul-
sivity to act rapidly without deliberation

[30]

Al 60 (mm) Lateral separation of both pedals Driving simulator
Ap 20 (mm) Perpendicular separation of both pedals Driving simulator
B –0.64 (acceleration); –1.53 (deceleration) The coefficient which represents the ratio of

the deviation of the acceleration over the
deviation of the pedal input

[22]

cg 10− The coefficient of the overall drag on the
vehicle

Driving simulator

for a real car. Also, the extreme complexity of the mechan-
ical model (e.g., engine torque, transmission torque, braking
torque, drivetrain load, aerodynamics, fiction, etc.) makes it
difficult to quantify the relation between the pedal input and
vehicle acceleration and speed. Therefore, the enhancement of
the vehicle’s mechanical component and real road tests might
be needed in future studies to validate this model. In addition,
we briefly introduced how to extend the current work to model
the effects of rule- or knowledge-driven components (e.g., road
characteristics, weather condition; [49]) on a driver’s speed
choice (see Section II-C2). For example, we can conduct a
matrix to model the influence of curves on a driver’s speed
choice, but we have to know the driver’s attitude toward speed
choice at each level of curves/lane width (i.e., rules). This
set of rules develops for each driver as he/she gains more
driving experience, and begins to compete with his/her primary
attributes listed in the main text (e.g., time benefit, monetary
cost, safety gain) depending on the driver’s speed preference
in any given situation. Due to page limits, however, it is
extremely hard to model all of these aspects in one study and
we are extending the model to consider these important topics
in our future work.

Appendix A

RDFT Mathematical Deduction and

Parameters Estimation

First, each driver’s subjective attribute matrix (Table I) was
converted into a normalized 4 × 4 attribute matrix M ′

4×4. The

attention weights matrix W (t) was assumed to select only
a single attribute j from M at each point in time during
deliberation [6] for an average driver or normal drivers. In this
case, W (t) was equal to 1 if j was selected, and 0 if j was not
selected. For those drivers who are characterized as impulsive
or non-impulsive, W (t) was set based on the probability of
attention to each attribute.

The contrast matrix C was set as its default form: the
diagonal elements Cxx = 1 and the off-diagonal elements Cxy =
–1/(m – 1), where m is the number of alternatives (m = 4 in
present study)

C =

⎡
⎢⎢⎣

1 −0.33 −0.33 −0.33
−0.33 1 −0.33 −0.33
−0.33 −0.33 1 −0.33
−0.33 −0.33 −0.33 1

⎤
⎥⎥⎦ .

The feedback matrix S was also set following the previous
work [15]: the diagonal elements Sxx = 1 and the off-diagonal
elements Sxy were equal to a small nonzero number (Sxy =
–0.001 in this case) which accounts for a wide range of robust
empirical phenomena

S =

⎡
⎢⎢⎣

0.95 −0.001 −0.001 −0.001
−0.001 0.95 −0.001 −0.001
−0.001 −0.001 0.95 −0.001
−0.001 −0.001 −0.001 0.95

⎤
⎥⎥⎦ .

Finally, the threshold parameter θ was used to determine
when a driver’s speed choice is made. Regardless of the effect
of personal characteristics, θ was set equal to 1 which is a

M4×4 =

⎡
⎢⎢⎣

100 100 100 100
−300 250 250 250
−250 −300 500 500
−500 −300 −300 750

⎤
⎥⎥⎦ → M ′

4×4 =

⎡
⎢⎢⎣

1.35 0.58 −0.11 −1.05
−0.25 1.11 0.34 −0.52
−0.05 −0.85 1.08 0.35
−1.05 −0.85 −1.31 1.22

⎤
⎥⎥⎦
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moderately low level of overall preference necessary to make a
speed choice [6]. With the parameter specification given, 1000
replications of the simulations were conducted in MATLAB
for each driver. Each replication represents a new encounter
of the decision making (determining a target speed).

Appendix B

Vehicle Mechanical Model Math Deduction and

Parameters Estimation

Based on (9), the deviation of the pedal angle at each short
time interval �t was expressed as follows

dθ =
∫ �t

0
A × η × (v∗

tar − vp) × dt. (15)

By combining (11) with (15), the deviation of acceleration
at each short time interval �t was

da =
∫ �t

0
A × B × η × (v∗

tar − vp) × dt. (16)

Ahmed [4] developed a free-flow acceleration model in
which the driver had the freedom to attain his/her desired
speed without the effects of surrounding traffic. As introduced
above, the term describes the difference between the driver’s
desired speed and the current speed at time t, and λ refers to
a constant sensitivity term (λ = 0.39). In this proposed work,
A × B represented a similar sensitivity term. Because the
parameter B was directly obtained from the STISIM driving
simulator, the parameter A was computed accordingly.

According to (12) and (16), the acceleration applied by the
driver at the time (t + �t) was described in (17). Note that the
acceleration inversely varies with the vehicle mass, assuming
that the composition of forces exerted on the vehicle remains
constant

a = a0 − ag +
∫ �t

0
A × B × η × (v∗

tar − vp) × dt. (17)

Finally, the vehicle speed at the next time interval was

V = V0 + [a0 − ag +
∫ �t

0
A × B × η × (v∗

tar − vp) × dt] × �t.

(18)

Appendix C

Setting of Parameters in the Current Model

Model parameters were set based on either existing studies
or the STISIM driving simulator (Table V).
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